Automorphism Group and Representation of a Twisted Multi-loop Algebra  被引量:3

Automorphism Group and Representation of a Twisted Multi-loop Algebra

在线阅读下载全文

作  者:Cui CHEN Hai Feng LIAN Shao Bin TAN 

机构地区:[1]Department of Mathematics and Physics, Fujian University of Technology, Fuzhou 350108, P. R. China [2]Department of Computer and Information, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China [3]Department of Mathematics, Xiamen University, Xiamen 361005, P. R. China

出  处:《Acta Mathematica Sinica,English Series》2010年第1期143-154,共12页数学学报(英文版)

基  金:Supported by National Natural Science Foundation of China (Grant No. 10671160);the Education Department of Fujian Province (Grant No. JBS07087)

摘  要:Let G be the complexification of the real Lie algebra so(3) and A = C[t1^±1, t2^±1] be the Lau-ent polynomial algebra with commuting variables. Let L:(t1, t2, 1) = G c .A be the twisted multi-loop Lie algebra. Recently we have studied the universal central extension, derivations and its vertex operator representations. In the present paper we study the automorphism group and bosonic representations ofL(t1, t2, 1).Let G be the complexification of the real Lie algebra so(3) and A = C[t1^±1, t2^±1] be the Lau-ent polynomial algebra with commuting variables. Let L:(t1, t2, 1) = G c .A be the twisted multi-loop Lie algebra. Recently we have studied the universal central extension, derivations and its vertex operator representations. In the present paper we study the automorphism group and bosonic representations ofL(t1, t2, 1).

关 键 词:Lie algebra automorphism group REPRESENTATION 

分 类 号:O437[机械工程—光学工程] O153.3[理学—光学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象