A Remark on Extension of Into Isometries  

A Remark on Extension of Into Isometries

在线阅读下载全文

作  者:Rui Dong WANG 

机构地区:[1]School of Mathematics, Nankai University, Tianjin 300071, P. R. China [2]Department of Mathematics, Tianjin University of Technology, Tianjin 300191, P. R. China

出  处:《Acta Mathematica Sinica,English Series》2010年第1期203-208,共6页数学学报(英文版)

基  金:Supported by National Natural Science Foundation of China (Grant No. 10871101);the Doctoral Pr0grame Foundation of Institution of Higher Education (Grant No. 20060055010)

摘  要:In this paper, we prove that an into isometry form S(l(n)^∞) to S(E), which under some conditions, can be extended to be a linear isometry defined on the whole space. Therefore we improve the results of [Ding, G. G.: The isometric extension of an into mapping from the unit sphere S(l(2)^∞) to S(Lμ^1). Acta Mathematica Sinica, English Series, 22(6), 1721-1724 (2006)].In this paper, we prove that an into isometry form S(l(n)^∞) to S(E), which under some conditions, can be extended to be a linear isometry defined on the whole space. Therefore we improve the results of [Ding, G. G.: The isometric extension of an into mapping from the unit sphere S(l(2)^∞) to S(Lμ^1). Acta Mathematica Sinica, English Series, 22(6), 1721-1724 (2006)].

关 键 词:isometric extension Tingley's problem l(n)^∞-space 

分 类 号:O177.2[理学—数学] P413[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象