Some ω-unique and ω-ΡProperties for Linear Transformations on Hilbert Spaces  被引量:2

Some ω-unique and ω-ΡProperties for Linear Transformations on Hilbert Spaces

在线阅读下载全文

作  者:Xin-he Miao Zheng-hai Huang Ji-ye Han 

机构地区:[1]Department of Mathematics, School of Science, Tianjin University, Tianjin 300072, China [2]Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

出  处:《Acta Mathematicae Applicatae Sinica》2010年第1期23-32,共10页应用数学学报(英文版)

基  金:Supported by the National Natural Science Foundation of China(No.10871144);the Natural Science Foundation of Tianjin(No.07JCYBJC05200)

摘  要:Given a real (finite-dimensional or infinite-dimensional) Hilbert space H with a Jordan product, we introduce the concepts of ω-unique and ω-P properties for linear transformations on H, and investigate some interconnections among these concepts. In particular, we discuss the ω-unique and ω-P properties for Lyapunov-like transformations on H. The properties of the Jordan product and the Lorentz cone in the Hilbert space play important roles in our analysis.Given a real (finite-dimensional or infinite-dimensional) Hilbert space H with a Jordan product, we introduce the concepts of ω-unique and ω-P properties for linear transformations on H, and investigate some interconnections among these concepts. In particular, we discuss the ω-unique and ω-P properties for Lyapunov-like transformations on H. The properties of the Jordan product and the Lorentz cone in the Hilbert space play important roles in our analysis.

关 键 词:Linear complementarity problem Jordan product Lorentz cone ω-P property column sufficient property ω-uniqueness property 

分 类 号:O177.1[理学—数学] TD325[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象