Integral Self-affine Tiles of Bandt's Model  

Integral Self-affine Tiles of Bandt's Model

在线阅读下载全文

作  者:Hui Rao Li-jun Zhang 

机构地区:[1]Department of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China [2]Department of Mathematics, Tsinghua University, Beijing 100084, China

出  处:《Acta Mathematicae Applicatae Sinica》2010年第1期169-176,共8页应用数学学报(英文版)

基  金:Supported by the National Natural Science Foundation of China(No.10631040)

摘  要:Integral self-affine tiling of Bandt's model is a generalization of the integral self-affine tiling. Using ergodic theory, we show that the Lebesgue measure of the tile is a rational number where the denominator equals to the order of the associate symmetry group. We apply the result to the study of the Levy Dragon.Integral self-affine tiling of Bandt's model is a generalization of the integral self-affine tiling. Using ergodic theory, we show that the Lebesgue measure of the tile is a rational number where the denominator equals to the order of the associate symmetry group. We apply the result to the study of the Levy Dragon.

关 键 词:IFS self-affine tiling invariant measure _ 

分 类 号:O172.2[理学—数学] TQ174.765[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象