检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京理工大学计算机科学与技术学院,南京210094
出 处:《中国图象图形学报》2010年第1期91-97,共7页Journal of Image and Graphics
摘 要:针对红外图像序列中的小目标跟踪问题,在分析红外小目标特点的基础上,提出了一种基于特征融合的粒子滤波目标跟踪算法。该方法利用粒子滤波支持目标特征融合的优点,提出将灰度特征和分形特征相融合,并将融合后的信息用于粒子权值的计算,从而大大提高了跟踪算法的稳健性。实验结果表明,和传统的粒子滤波算法相比,该算法能够更加准确、有效地跟踪红外序列中的小目标。For small target tracking in infrared (IR) image sequences, a particle filter algorithm based on feature fusion is presented with the analysis of the characters of small IR targets. Taking the advantage of particle filter of supporting target feature fusion method, this algorithm combines the gray feature with fractal feature, and then uses the fusion results to calculate the particle weights, which greatly improves the robustness of the tracking algorithm. The experimental results show that the presented method is more accurate and effective for small IR target tracking in infrared image sequences than the traditional particle filter method.
关 键 词:红外小目标跟踪 粒子滤波特征融合 灰度直方图 分形维数
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28