检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]安徽大学计算机科学与技术学院,安徽合肥230039 [2]合肥学院网络与智能信息处理中心实验室,安徽合肥230601
出 处:《计算机技术与发展》2010年第1期124-127,131,共5页Computer Technology and Development
基 金:安徽省自然科学基金项目(KJ2009B122;KJ2008B03)
摘 要:离群数据挖掘是数据挖掘领域的一个研究分支,而聚类算法分析则是进行离群数据挖掘的重要研究方法之一。文中首先分析研究离群数据挖掘方法,对多个离群数据挖掘算法进行分析比较,讨论各自的优点和不足,同时针对高维空间数据的特点,分析挖掘高维空间数据中的离群点方法。其次对聚类分析算法进行讨论,分析一种基于网格和基于密度的聚类方法——聚类高维空间算法(CLIQUE算法),运用它可以更好地挖掘高维空间中的离群数据。提出了CLIQUE算法的有待改进的思想,为以后的研究指明方向。As a branch of data-mining,outlier mining is a promising prospect,and clustering analysis is a kind of technology in spatial outlier mining.Analyse the clustering arithmetic,compare some arithmetic of clustring,and discuss the strongpoint and shortpoint of them.Research the spatial data and outlier attributes in high dimensional space.And analysing the CLIQUE algorithm to detect the outlier in high dimensional space,this approach can find the outliers in high-dimensional space effectively.In conclusion,the main trends of spatial outlier mining are foretaste.
分 类 号:TP311.5[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222