非完美界面弹性复合材料中的微分几何方法  被引量:1

Differential Geometrical Method in Elastic Composite with Imperfect Interfaces

在线阅读下载全文

作  者:童金章[1] 关凌云[1] 张清杰[1] 

机构地区:[1]武汉工业大学工程力学系

出  处:《应用数学和力学》1998年第9期805-814,共10页Applied Mathematics and Mechanics

摘  要:首次用微分几何方法计算了含一般旋转椭球体嵌入相的非完美界面弹性复合材料的有效模量·用内蕴几何量表出了能量泛函中的全部界面积分项,由此得到了这种统一嵌入相模型的复合材料有效模量的上下界限·在三种极限情况,即球、盘和针状嵌入相下,本文的结果将退化到Hashin(1992)的结果·A differential geonmetrical method is for the first time used to calculate the effective moduli of a two_plaste elastic composite materials with imperfect interface which the inclusions are assumed to be ellipsoidal of revolutions. All of the interface integral items participating in forming the potential and complementary energy functionals of the composite materials are expressed in terms of intrinsic quantities of the ellipsoidal of revolutions. Based on this, the upper and the lower bound for the effective elastic moduli of the composite materials with inclusions described above have been derived. Under three limiting conditions of sphere, disk and needle shaped inclusions, the results of this paper will return to the bounds obtained by Hashin (1992).

关 键 词:微分几何法 复合材料 非完美界面 有效模量 

分 类 号:TB33[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象