利用反向传播神经网络研究变压器油多关联参数  被引量:4

Using BP Neural Network in Studying Multi-correlation Parameters of Transformer Oil

在线阅读下载全文

作  者:李智[1] 曹顺安[2] 

机构地区:[1]广东电网公司电力科学研究院,广东广州510600 [2]武汉大学,湖北武汉430072

出  处:《广东电力》2009年第12期24-29,共6页Guangdong Electric Power

摘  要:介绍用反向传播(back propagation,BP)神经网络对变压器油的重要参数——击穿电压建立预测模型,实现对变压器油性能监测的方法,阐述了网络层数、神经元个数、训练函数的设计过程,样本训练的实验结果证明该网络模型具有较好的预测能力;同时,基于BP神经网络的建模方法建立包括变压器油击穿电压、闪点、酸值、总烃、水分等参数之间关联的BP网络预测模型,将2种模型进行比较发现,网络预测模型的预测结果与实际结果的相对误差较小,从而证明该预测模型具有一定的实际意义。This paper dcscribes the method of using BP(back propagation)neural network to develop prediction model for breakdown voltage, an important parameter of transformer oil, so as to realizc the monitoring on transformer oil performance. The design process of the number of network expounded. The test results of sample training prove that the layers, the number of neurons and the training function is network model is of bcttcr predicting ability. Meanwhile, BP network prediction model reflecting the correlation among transformer oil parameters such as breakdown voltage, flash point, acid number, total hydrocarbon and water content is built based on the modeling method of BP neural network. Upon comparison, it is found that the network prediction model has smaller relative error; therefore it is of practical meaning.

关 键 词:变压器油 预测模型 击穿电压 反向传播神经网络 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象