检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京科技大学机械工程学院,北京100083 [2]陆军航空兵学院机载设备系,北京101114
出 处:《机械工程学报》2010年第2期145-149,共5页Journal of Mechanical Engineering
基 金:国家自然科学基金资助项目(50875021)
摘 要:针对电火花线切割机床(Wire electrical discharge machining,WEDM)可靠性数据分布模型无法确定的问题,提出应用径向基函数(Radial basis function,RBF)神经网络对可靠性数据进行模拟仿真,扩大可靠性数据样本量,从而确定其分布模型的方法。选取聚类学习算法作为神经网络学习方法,通过无监督学习确定RBF神经网络中各隐节点的数据中心,并根据各数据中心之间的距离确定隐节点的扩展常数,然后用有监督学习训练各隐节点的输出权值。经过对原始可靠性数据进行拟合训练后生成一套RBF神经网络,随机产生100个可靠度数据输入该神经网络产生与原始可靠性数据具有相同失效统计规律的数据。对扩充后的可靠性数据通过图估计法和柯尔莫哥洛夫-斯米尔诺夫(Kolmogorov-smirnov,K-S)检验法确定电火花线切割机床可靠性数据分布模型为对数正态分布模型,同时对可靠性模型的参量估计更加准确。For determining the distribution model of wire electrical discharge machining (WEDM) reliability data, the radial basis function (RBF) neural network is applied to simulating the original :reliability data, and more reliability data are achieved that have the same distribution rules with the original reliability data. The cluster learning algorithm is chosen as the learning method of the neural networks. The data centers of hidden nodes are determined by unsupervised learning, and the extended constants of the hidden nodes are determined by the distances of each data center, then the output weights of the hidden nodes are achieved by the sups'vised learning method. After simulating and calculating, the extended reliability data is achieved by the trained RBF neural networks, and the reliability distribution model of WEDM reliability data is confirmed as log-normal distribution model by the graphical estimation method and Kolmogorov-smiruov (K-S) test method. And it is more accurate for estimating characteristic parameters of the reliability distribution model.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222