检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华北电力大学控制科学与工程学院,河北省保定市071003
出 处:《中国电机工程学报》2010年第2期115-121,共7页Proceedings of the CSEE
摘 要:在深入研究高加系统故障特征规律的基础上,提出一种结合最大故障分离度为目标的征兆寻优技术和神经网络,适用于不同负荷下高加给水系统程度迥异故障诊断的新方法。仿真诊断结果表明:在系统拓扑结构基本不变的前提下,该方法对不同负荷下程度迥异的高加故障均可得到具有高故障分离度的正确诊断结果,并可通过最优缩放倍率大致判断故障程度。该方法应用于高加故障诊断可大大减少神经网络训练样本的数量,增强故障诊断系统对不同负荷下程度迥异故障的诊断能力,改善系统现场应用效果。With deep investigation on the changing rules of different faults in the feedwater heater system, a new approach by combining fault symptom zoom optimization technology with artificial neural network was proposed for diagnosing faults of variable-degree under different loads for the feedwater heater system. Detailed fault diagnosis tests were carried out on a 300 MW full-scope simulator. The results show that this new method can diagnose faults of variable degree under different operating points accurately if the system topological structure keeps little change. The severity of an actual fault compared with its typical sample can also be approximately estimated through the optimal symptom zoom factor. The method greatly reduces the fault samples used for neural network training and improves the adaptability of a fault diagnosis system to different loads and variable fault degree.
分 类 号:TP277[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.50