检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中南大学土木建筑学院,长沙410075 [2]西南交通大学应用力学与工程系,成都610031
出 处:《工程力学》2010年第2期209-213,221,共6页Engineering Mechanics
基 金:国家自然科学基金委与中国工程物理研究院项目(10576024);西南交通大学校基金项目(2006B02)
摘 要:以二元机翼-操纵面立方非线性系统为研究对象,基于能量方法和活塞理论建立了三自由度二维翼段-操纵面的运动微分方程,采用当量线性化方法计算出系统极限环颤振频率,然后将操纵面孤立成单自由度系统,借用现有的单自由度杜芬振子的混沌运动的解析条件来分析操纵面在极限环颤振频率下的响应情况,从而预估原系统的混沌运动存在区域,并用数值积分方法研究了系统的复杂动力学响应。结果表明:在理论分析所获得的混沌运动区域内,系统确实存在混沌运动,但从数值模拟的结果上看,在上述的区域内,系统还存在一些狭窄的周期窗口。A two dimension wing with a control surface in supersonic flow is theoretically modeled based on the energy method and piston theory, in which the cubic stiffness in the torsional direction of the control surface is considered. An approximate method of the chaotic response analysis of the nonlinear aeroelastic system is studied, the main idea of which is that under the condition of stable limit cycle flutters of the aeroelastic system, the vibration in the plunging and pitching of the wing can approximately be considered to be simple harmonic excitation to the control surface. The motion of the control surface can be modeled by a nonlinear oscillator of one-degree-of-freedom. Then, the range of the chaotic response of the control surface is approximately determined. The theoretical analysis is verified by the numerical results. However, there are relatively sub regions of periodic motions embedded with the chaotic region.
分 类 号:V411[航空宇航科学与技术—航空宇航推进理论与工程] O322[理学—一般力学与力学基础]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.13