Positive Solutions of a Weak Semipositone Third-Order Three-Point Boundary Value Problem  被引量:1

Positive Solutions of a Weak Semipositone Third-Order Three-Point Boundary Value Problem

在线阅读下载全文

作  者:Qing Liu YAO 

机构地区:[1]Department of Applied Mathematics, Nanjing University of Finance and Economics, Jiangsu 210003, P. R. China

出  处:《Journal of Mathematical Research and Exposition》2010年第1期173-180,共8页数学研究与评论(英文版)

基  金:Supported by the National Natural Science Foundation of China (Grant No.10871059)

摘  要:The positive solutions are studied for the nonlinear third-order three-point boundary value problem u′″(t)=f(t,u(t)),a.e,t∈[0,1],u(0)=u′(η)=u″(1)=0, where the nonlinear term f(t, u) is a Caratheodory function and there exists a nonnegative function h ∈ L^1[0, 1] such that f(t, u) 〉 ≥-h(t). The existence of n positive solutions is proved by considering the integrations of "height functions" and applying the Krasnosel'skii fixed point theorem on cone.The positive solutions are studied for the nonlinear third-order three-point boundary value problem u′″(t)=f(t,u(t)),a.e,t∈[0,1],u(0)=u′(η)=u″(1)=0, where the nonlinear term f(t, u) is a Caratheodory function and there exists a nonnegative function h ∈ L^1[0, 1] such that f(t, u) 〉 ≥-h(t). The existence of n positive solutions is proved by considering the integrations of "height functions" and applying the Krasnosel'skii fixed point theorem on cone.

关 键 词:singular ordinary differential equation multi-point boundary value problem posi-tive solution EXISTENCE multiplicity. 

分 类 号:O175.8[理学—数学] O175[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象