检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《铁道学报》2010年第1期93-97,共5页Journal of the China Railway Society
基 金:铁道部科技研究开发计划(2007X012-B)
摘 要:构建具有装载重量、体积以及性质相互抵触的货物不能混装等多约束条件下,基于配放约束的货物多车配载模型。并以该模型为基础,提出求解该问题的蚁群算法。在模型求解过程中,针对问题特点,充分考虑货物配装限制及装载工具的载重、容积等方面约束,基于待装货物比容动态逼近装载工具剩余空间比容策略,综合运用ACA-VEHICLE和ACA-VOTUME等2个不同蚁群协同考虑两个目标——需用装载工具数目和重量、容积利用率优化对问题的求解策略进行研究。改进了蚁群算法的求解策略,提升了算法性能。最后,结合8类100件货物的配装问题,对模型算法进行检验,结果满意,说明该方法具有实用性。An improved model is presented for optimal loading of multi-category goods multi-ant colony algorithm is devised to make good use of vehicle's loading weight and minimizing the difference of the specific volumes between surplus loading space of the and multi-vehicles. The volume on the basis of vehicle and goods to be loaded. The multi-ant colony algorithm includes two parts : ACA-VEHICLE and ACA-VOTUME,which are collaborated to optimize the loading capacity and volume of vehicles and minimize the number of vehicles needed in various conditions. Improvement is made to bring out a more practical ant colony algorithm. An example of loading of 8-category 100-piece goods is analyzed to verify the correctness and efficiency of the proposed model and algorithm.
关 键 词:蚁群协同策略 货物多车配载 铁路货物运输 特种货物
分 类 号:U294.1[交通运输工程—交通运输规划与管理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112