检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学技术大学管理学院,安徽合肥230026
出 处:《计算机系统应用》2010年第2期164-168,共5页Computer Systems & Applications
基 金:国家自然基金(70671096);国家杰出青年基金(B类)(70629002)
摘 要:为了提高粒子群(PSO)算法的性能,提出一种基于云模型理论的改进PSO算法,并应用于差异工件单机批调度问题的求解。首先根据粒子的适应值把种群划分为三个子群,提出一种随机的位置和速度更新方法,来有效平衡算法的局部和全局搜索;然后引入基于云模型理论的自适应参数策略,不同的子群采用不同的惯性权重生成方法,提高种群的多样性和算法的收敛速度。实验比较结果验证了该算法的全局搜索性能。An adaptive Particle Swarm Optimization based on cloud model theory is proposed to improve its capability and applied to minimizing the makespan of a single batch-processing machine with non-identical job sizes. The particles are first divided into three groups based on the fitness of the particle to propose a new method for updating location and velocity. Then an adaptive strategy for varying parameters of PSO based on cloud model theory is introduced and different groups adopted different inertia weight generating methods, which does not only improve the convergence speed, but also maintain the diversity of the population. The global search performance of this adaptive algorithm is validated by the results of the comparative experiments.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222