检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]大庆石油学院电气信息工程学院,大庆163318
出 处:《科学技术与工程》2010年第4期1001-1004,1009,共5页Science Technology and Engineering
摘 要:针对电机转子故障,利用神经网络方法进行故障诊断研究。将基本粒子群优化(PSO)算法进行改进,并用其训练反向传播(BP)神经网络,对电机转子进行故障诊断。选用电机转子振动频谱分量作为神经网络的训练样本,将故障信息数据作为输入量代入已训练好的神经网络,通过输出结果即可诊断故障类型。仿真结果表明,基于改进PSO算法的BP神经网络可以有效地识别电机常见故障,具有较快的收敛速度和较高的诊断精度。For the failures of the motor, the method of failures diagnosis is studied by using the neural network. Making the improvement to the basic Particle Swarm Optimization (PSO) algorithm, and then it is used in training on (BP) neural network to carry out failure diagnosis for the motor rotor. By withdrawing motor rotor' s vibration frequency spectrum component as the neural network' s training sample, inputs the failure information data to the neural network trained well already, then diagnoses the failure type through the output result. The simulation result indicates that, the improved PSO algorithm used in training BP neural network can distinguish the common motor failures effectively with quick convergence rate and high diagnosis orecision.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.185