基于GMM-UBM和GLDS-SVM的英文发音错误检测方法  被引量:3

Automatic Mispronunciation Detection for English Learners by GMM-UBM and GLDS-SVM Methods

在线阅读下载全文

作  者:李宏言[1] 黄申[1] 王士进[1] 梁家恩[1] 徐波[1,2] 

机构地区:[1]中国科学院自动化研究所数字内容技术研究中心,北京100190 [2]中国科学院自动化研究所模式识别国家重点实验室,北京100190

出  处:《自动化学报》2010年第2期332-336,共5页Acta Automatica Sinica

基  金:国家高技术研究发展计划(863计划)(2006AA010103)资助~~

摘  要:将语种和说话人识别的方法应用到英语发音错误检测系统,提出一种基于广义线性区分序列支持向量机(Generalized linear dis-criminant sequence based SVM,GLDS-SVM)的发音错误检测方法.主要创新点为:1)提出一种基于状态拼接的特征规整方案,增强SVM对发音特征的建模能力;2)提出一种基于多模型融合的模型训练策略,该策略可以更加充分地利用训练数据,并在一定程度上解决了由于真实发音错误数据缺乏造成的正负样本不均衡的问题;3)将GLDS-SVM与基于通用背景模型GMM(Universal background modelsbased GMM,GMM-UBM)的方法进行融合,以进一步提高发音检错性能.GLDS-SVM和GMM-UBM的融合系统在仿真测试集和真实测试集上的等错误率(Equal error rate,EER)分别达到9.92%和16.35%.同时,GLDS-SVM在模型占用空间和运算速度方面均比传统径向基函数(Radial basic function,RBF)核方法具有明显优势.The paper proposes an efficient generalized linear discriminant sequence based SVM (GLDS-SVM) based mispronunciation detection method. Firstly, in order to enhance the ability of describing pronunciation characteristics, we introduce an improved SVM feature normalization scheme based on state-concatenated operation. Then, we propose a novel multi-model strategy for model training to make full use of samples and solve the problem of data unbalance caused by lack of the actual mispronunciation corpus. Finally, we combine GLDS-SVM with universal background models based GMM (GMM-UBM) to further improve the performance. The fused system by these two methods achieves 9.92% and 16.35% in equal error rate (EER) for simulation set and real set, respectively. Meanwhile, GLDS-SVM processes a higher computation speed and smaller model size than traditional radial basic function (RBF) kernel.

关 键 词:计算机辅助语言学习 自动发音错误检测 支持向量机特征规整 多模型融合策略 

分 类 号:TN912.34[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象