一种新的频繁项集精简表示方法及其挖掘算法的研究  被引量:18

Research on a New Concise Representation of Frequent Itemset and Its Mining Algorithm

在线阅读下载全文

作  者:宋威[1] 李晋宏[1,2] 徐章艳[3] 杨炳儒[2] 

机构地区:[1]北方工业大学信息工程学院,北京100144 [2]北京科技大学信息工程学院,北京100083 [3]广西师范大学计算机科学与信息工程学院,广西桂林541004

出  处:《计算机研究与发展》2010年第2期277-285,共9页Journal of Computer Research and Development

基  金:国家自然科学基金项目(60675030);北京市优秀人才培养资助项目(2009D005002000009);北方工业大学青年重点研究基金项目;北方工业大学博士科研启动基金项目~~

摘  要:频繁项集挖掘是数据挖掘研究领域的一个基本问题,其瓶颈在于频繁项集全集的结果过多,冗余现象严重.主要的解决思路是只挖掘全体频繁项集中有代表性的子集,使得这种子集或者可满足应用的需要或者可由它们导出其他项集.最大项集和闭项集便是这类解决方案中两种最典型的子集形式.在最大项集和闭项集的基础上,提出了元项集这一新的频繁项集精简表示方法.首先,证明了最大项集和闭项集都是元项集的特例,且元项集所包含的项集数目介于二者之间;其次,讨论了元项集的性质.最后,通过在闭项集挖掘算法DCI-Closed-Index的基础上引入剪枝策略,设计了一个元项集挖掘算法.实验结果表明,所提出的挖掘算法是有效的和高效的.Frequent itemset mining has become an important data mining task and a focused theme in data mining research. The bottlenecks of frequent itemset mining are as follows: On the one hand, the number of all frequent itemsets is usually extremely large. On the other hand, there is often severe redundancy in the resultant itemsets. To overcome these problems, recently several proposals have been made to construct a concise representation of the frequent itemsets, instead of mining all frequent itemsets. The aim is that the resultant subset can either satisfy the requirements of applications, or can derive all the other frequent itemsets. Maximal itemset and closed itemset are two most typical representative subsets of all frequent itemsets. Based on maximal itemset and closed itemset, a new concise representation of frequent itemset, namely meta itemset, is proposed. It is proved that both maximal itemset and closed itemset are special cases of meta itemset. The cardinality of meta itemset is between those of maximal itemset and closed ire:reset. Then, property of meta itemset is discussed. Finally, by introducing pruning strategies to DCI-closed-index, which is a closed itemset mining algorithm, an algorithm for mining meta itemset is proposed. Experimental results show that the proposed algorithm is effective and efficient.

关 键 词:数据挖掘 关联规则 最大项集 闭项集 元项集 

分 类 号:TP311[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象