检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]湖南人文科技学院数学系,湖南娄底417000 [2]三峡大学理学院,湖北宜昌443002
出 处:《计算机应用与软件》2010年第2期218-220,共3页Computer Applications and Software
摘 要:给出了一种基于三角函数的类三次三角Bézier曲线,并简称为QCT-Bézier曲线,其基函数由四个带两个形状参数的三角多项式组成。由四个顶点控制的QCT-Bézier曲线不仅具有类似于三次Bézier曲线的诸多性质,而且其形状可通过修改两个形状进行局部或整体调节,方便设计不同形状的曲线。选取适当的形状参数,可使两条QCT-Bézier曲线段在连接点处满足C3拼接。另外,在适当条件下,QCT-Bézier曲线无需有理形式即可精确地表示圆弧、椭圆弧、抛物线弧等二次曲线。A kind of quasi cubic trigonometric Bezier curve based on trigonometric function, in short, QCT-Bezier curve, is presented in this paper. Its basic function is constructed by four trigonometric polynomials with two shape parameters each. The four vertices controlled QCT-Bezier curve has a lot of properties similar to cubic Brzier curve, and its shape can be locally or globally adjusted by modifying two shape parameters, which is convenient for designing curves in different shape. Properly choosing shape parameters can satisfy C^3 stitching of two- piece QCT-BEzier at their joints. In addition, in appropriate condition, the QCT-BEzier curve can represent other quadratic curves such as circle arc, elliptic arc and parabola arc accurately without rational form.
关 键 词:三角曲线 BÉZIER曲线 形状参数 二次曲线 曲线设计
分 类 号:TP391.72[自动化与计算机技术—计算机应用技术] TP391.41[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112