检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《数据采集与处理》2010年第1期18-22,共5页Journal of Data Acquisition and Processing
基 金:国家自然科学基金(60672157;60672158)资助项目
摘 要:针对语音信号的弱时频正交性,提出一种基于主分量分析的混合矩阵估计方法。在时频域中,允许每个时频点存在任意多个源信号,通过对每个时频点进行主分量分析,检测只有一个源信号存在的时频点,此类时频点最大特征值对应的特征向量即为混合向量的一个估计,因此对所有估计出的混合向量进行K均值聚类,将聚类中心作为混合矩阵的估计。实验仿真表明,提出的方法提高了混合矩阵的估计精度,特别适用于估计欠定情况下的混合矩阵。In blind speech separation, a method based on principal component analysis (PCA) is proposed to estimate the mixing matrix for the weak time-frequency orthogonality property of speech. In the time-frequency domain, the proposed method allows the arbitrary number of sources to be existed in a time-frequency bin, then PCA is applied to every time-frequency bin to detect the existed one source in the time-frequency bins. In the detected time-frequency bins, the eigenvector associated with the maximum eigenvalue is an estimation of the mixing vectors, so K-means clustering is exploited on all the mixing vectors and the cluster centers are used as the estimation of the mixing matrix. Simulation results demonstrate that the proposed method can improve estimation precision, especially for estimating the mixing matrix in under- determined case.
分 类 号:TN911.7[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49