检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国民航局第二研究所,四川成都610041 [2]电子科技大学通信与信息工程学院,四川成都610054
出 处:《计算机仿真》2010年第2期239-241,368,共4页Computer Simulation
基 金:国家自然科学基金重点项目(60736045)
摘 要:为了增强红外或者可见光图像数据中的弱小目标检测,提出了一种采用模糊C均值(FCM)聚类与迭代最小二乘(RLS)自适应滤波相结合的背景抑制方法。假设待检测目标在图像帧上具有极小的空域扩展度,且受到强背景杂波的干扰。对输入的图像首先采用FCM聚类划分为灰度准平稳的子域,再将整帧图像均匀划分为相同的子块,然后在每个子块中针对每类子域利用RLS滤波估计背景杂波并另以去除,结果只剩下目标信号与残留噪声。大量仿真试验表明与其它传统方法相比具有更好的检测性能。A method of background suppression using fuzzy c - means ( FCM ) clustering and recursive least square (RLS) filter is proposed to enhance the detection of dim small targets in IR or visual - light image data. The target to be detected is assumed to have a small spatial spread in a frame, and is obscured by heavy background clut- ter. The input data is firstly partitioned using FCM clustering, and each cluster is thought as a gray - level quasi - stationary subset. Secondly the image is partitioned to some sub - images uniformly, and then a RLS filter is applied to estimate background for each subset in each sub - image. Thus the background can be subtracted from input data, leaving components of the target signal in the residual noise. Many experiment results show better performance of de- tection by the method than by other traditional methods.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222