检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工程大学计算机科学与技术学院,黑龙江哈尔滨150001
出 处:《应用科技》2010年第2期52-54,60,共4页Applied Science and Technology
摘 要:最大类间方差法(Otsu法)因其计算简单、自适应性强而成为被广泛使用的图像阈值自动选取方法.在分析Otsu法原理的基础之上,提出了一种改进的最大类间方差法.为了提高分割效果,该方法同时考虑了背景和目标的类间距离和类内距离.与同类方法相比,提出的方法将目标和背景所占的比例作为权值修正了现有的方法,使得衡量类内距离的目标与背景的平均方差按照目标与背景的面积划分.Lena、Cameraman标准测试图像以及杂草图像的仿真结果验证了本方法的有效性.Otsu algorithm is widely used in image segmentation thanks to its simplicity and self-adaptation. After studying Otsu thresholding algorithm, an improved method is developed in this paper. By combining the between class distance and within class distance of object and background, a better segmentation is achieved with the new proposed thresholding method. The method proposed in this paper outperforms the present similar methods by using the proportion of object and background as weight values, to make the average variance of the object and the background segmented by their respective areas. The simulation results of standard testing images as well as weed images show the effectiveness of the proposed method.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.158