检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Guang Gui DING
机构地区:[1]School of Mathematical Science and LPMC, Nankai University, Tianjin 300071, P. R. China
出 处:《Acta Mathematica Sinica,English Series》2010年第2期331-336,共6页数学学报(英文版)
基 金:Supported by National Natural Science Foundation of China (Grant No. 10871101);Research Fund for the Doctoral Program of Higher Education (Grant No. 20060055010)
摘 要:In this paper, we show that if Vo is a 1-Lipschitz mapping between unit spheres of two ALP-spaces with p 〉 2 and -Vo(S1(LP)) C Vo(S1(LP)), then V0 can be extended to a linear isometry defined on the whole space. If 1 〈 p 〈 2 and Vo is an "anti-l-Lipschitz" mapping, then Vo can also be linearly and isometrically extended.In this paper, we show that if Vo is a 1-Lipschitz mapping between unit spheres of two ALP-spaces with p 〉 2 and -Vo(S1(LP)) C Vo(S1(LP)), then V0 can be extended to a linear isometry defined on the whole space. If 1 〈 p 〈 2 and Vo is an "anti-l-Lipschitz" mapping, then Vo can also be linearly and isometrically extended.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222