Vanishing Theorem for Irreducible Symmetric Spaces of Noncompact Type  

Vanishing Theorem for Irreducible Symmetric Spaces of Noncompact Type

在线阅读下载全文

作  者:Xu Sheng LIU 

机构地区:[1]School of Mathematical Sciences, Fudan University, Shanghai 200433, P. R. China

出  处:《Acta Mathematica Sinica,English Series》2010年第2期361-368,共8页数学学报(英文版)

摘  要:We prove the following vanishing theorem. Let M be an irreducible symmetric space of noncompact type whose dimension exceeds 2 and M ≠SO0(2, 2)/SO(2) × SO(2). Let π : E →* M be any vector bundle. Then any E-valued L2 harmonic 1-form over M vanishes. In particular we get the vanishing theorem for harmonic maps from irreducible symmetric spaces of noncompact type.We prove the following vanishing theorem. Let M be an irreducible symmetric space of noncompact type whose dimension exceeds 2 and M ≠SO0(2, 2)/SO(2) × SO(2). Let π : E →* M be any vector bundle. Then any E-valued L2 harmonic 1-form over M vanishes. In particular we get the vanishing theorem for harmonic maps from irreducible symmetric spaces of noncompact type.

关 键 词:vanishing theorem symmetric space harmonic form 

分 类 号:O174.41[理学—数学] O186.16[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象