检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]四川大学经济学院,四川成都610065 [2]电子科技大学经济与管理学院,四川成都610054
出 处:《管理工程学报》2010年第1期70-76,共7页Journal of Industrial Engineering and Engineering Management
基 金:国家自然科学基金资助项目(70671017);成都市科技计划资助项目(cdkj-07-03/04)
摘 要:针对新兴技术企业信用风险评估的必要性和现有评估方法仅局限于财务指标且指标之间高度相关的缺点,借鉴了可变精度粗糙集(VPRS)模型具有噪声数据的强适应能力和强抗干扰能力的优点,提出了一类基于VPRS的新兴技术企业信用风险识别方法,并用已上市的部分新兴技术企业对其进行实证检验,检验结果表明了该方法具有较好的识别能力。该方法首先运用VPRS理论的最新研究成果,并借助于粗糙集分析软件ROSETTA,对由训练样本组成的数据关系表进行数据补缺、离散化及属性的β约简等处理,从而导出识别规则,形成识别规则库;然后集成二叉树构建一类新兴技术企业信用风险识别方法;最后用测试样本对方法的识别精度进行检验。Considering of the necessities of the emerging technology firms' credit fisk's assessment and the shortcoming of existing assessment approaches which mostly base on the financial assessment indexes and the assessment indexes are highly correlative, this paper introduces an identification method of emerging technology firms based on variable precision rough sets (VPRS), which uses the advantage of VPRS in dealing with noise data, then the empirical testifies the method by the emerging technology listing firms, the result demonstrates the approach identifying credit risk well. The approach applies the fruit of VPRS theory firstly, with the analytical software ROSETTA, and then completes, discretizes, attributes reduces and rules generates the data relation table which is composed of training sample and identifying indexes to deduce the rules identifying the credit risk of the emerging technology firms ; then rules house is built, constructs the identification approach integrating the binary tree secondly, finally testifies the integrated approach by using the testing sample.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.70