检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郑能雄[1] 沈波[1] 许旭艳[1] 官陈平[1]
出 处:《中国预防医学杂志》2010年第2期178-180,共3页Chinese Preventive Medicine
摘 要:目的探索BP人工神经网络在细菌性痢疾预测模型的应用,为细菌性痢疾的预防控制措施提供科学依据。方法用Matlab7.2软件包中的神经网络工具箱,建立福州地区菌痢流行的BP人工神经网络模型,并以2007年的资料验证其预测成功率。结果神经网络经学习和训练,训练误差下降并趋于稳定,回代相关系数为0.826,模型的预测成功率为83.33%。结论本研究表明,BP人工神经网络在气象要素与菌痢发病之间建模是可行的,可以作为预测菌痢流行的一种新方法。Objective To explore the performance of a BP neural network model of bacillary dysentery prevalence influenced by meteorological elements,and to provide scientific evidences for preventive strategies of bacillary dysentery.Methods The forecasting model of bacillary dysentery prevalence was established by using the neural network toolbox of Matlb 7.2 software package with surveillance data of bacillary dysentery and meteorological records from the year of 1987 to 2006 in Fuzhou.The model was tested with data of 2007.Results The training of the model decreased errors of predictions and made the system more stable.The coefficient value of final model was 0.826 and the accurate rate of prediction was 83.33%.Conclusion The established BP neural network model may be used as a new method for predicting the prevalence of bacillary dysentery with meteorological elements.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249