检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]浙江大学工业控制技术国家重点实验室,浙江杭州310027
出 处:《自动化仪表》1998年第12期4-9,共6页Process Automation Instrumentation
基 金:国家自然科学基金资助项目(No.69774023)
摘 要:对于参数变化且含有时滞的被控对象,传统控制方法难以获得理想效果.本文基于神经元模型及学习策略,提出采用不同学习速率的神经元学习方法,由此构成的神经元控制器能加速神经元权值收敛,改善神经元控制品质,使这类被控对象可取得满意的控制效果.仿真结果表明,只要选择适当的神经元参数,可以较明显地减少神经元控制的超调量,并有很强的鲁棒性和抗干扰性.For the controlled objects with varying parameters and time lag characteristic ideal effects can not be obtained by traditional control method. Based on neuron model and learning strategy the paper states that satisfactory control result can be accomplished to such objects by the neuron controller which is adopting neuron learning method with different learning rates. The controller makes the convergence of the weight of the neuron faster and improves the control quality. Thus satisfactory control effects are obtained for such controlled objects. The simulation results show that the control overshoot can be decreased obviously by selecting proper neuron parameters. Meanwhile high robustness and anti - interference capability are also featured.
分 类 号:TP13[自动化与计算机技术—控制理论与控制工程] TP18[自动化与计算机技术—控制科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.152.135