检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东南大学,南京210096
出 处:《中国机械工程》2010年第4期491-495,共5页China Mechanical Engineering
基 金:高等学校博士学科点专项科研基金资助项目(200802861061);江苏省汽车工程重点实验室开放基金资助项目(QC200603)
摘 要:为了缩短在进行汽车试验前驾驶机器人对不同车型的适应性调整时间,提出了一种用于驾驶机器人的车辆性能自学习方法,对影响驾驶机器人驾驶行为的车辆尺寸和汽车性能参数进行自学习。车辆尺寸的学习通过示教再现实现,汽车性能自学习中油门和制动执行器的指令信号通过所需的车辆驱动功率来确定。对因长时间驾驶引起的控制参数变化进行在线优化,以补偿长时间试验过程中汽车零部件的磨损。试验结果表明,提出的方法实现了驾驶机器人的自学习、自适应、自补偿,驾驶机器人具有良好的车型适应能力,车速跟踪精度满足试验的要求,能消除汽车试验中人为因素的影响。To reduce the preparation time before vehicle test,a vehicle performance self learning method applied to robot driver was proposed.The vehicle geometric parameters and vehicle performance parameters which influence the driving behavior of robot driver were self learned. The vehicle geometric parameters were learned by key box,and the command signals applied to the accelerator and brake actuators were determined by the power needed to drive the vehicle during the process of vehicle performance parameter self learning. Furthermore,the capability of control parameter self-optimization on line made it possible to compensate for the wear of vehicle during the long term test. Experimental results demonstrate that the self-learning,self-adaptation and self-compensation are realized by the proposed method and the robot driver can be applicable to a wide variety of vehicles. Moreover,the accuracy of vehicle speed tracking meets the requirements of vehicle test. Therefore,the method provides a solution to eliminate the uncertainty of vehicle test results by human drivers.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.12