基于简易支持向量机的客户流失预测研究  被引量:2

Customer churn prediction based on simple support vector machine

在线阅读下载全文

作  者:夏国恩[1] 

机构地区:[1]广西财经学院工商管理系,南宁530003

出  处:《计算机应用研究》2010年第3期904-906,共3页Application Research of Computers

基  金:国家自然科学基金资助项目(70801021);国家教育部人文社会科学研究基金资助项目(08JC630019);广西高校优秀人才资助计划项目(桂教人[2009]62号文)

摘  要:应用简易支持向量机(SSVM)进行客户流失预测,以提高机器学习方法的预测能力。以国外电信公司客户流失预测为实例,与最近邻算法(NPA)进行了对比,发现该方法在获得与NPA近似准确率的条件下,所花费的时间和时间增加值远小于NPA,是研究客户流失预测问题的有效方法。To improve the prediction abilities of machine learning methods, this paper applied a simple support vector machine(SSVM) to customer churn prediction. The method was compared with NPA regarding customer churn prediction for foreign telecommunication carrier. It was found that the method need less time and adding time with the consistent precision, and provided an effective measurement for customer churn prediction.

关 键 词:客户流失 简易支持向量机 预测 

分 类 号:F830.133[经济管理—金融学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象