基于朴素基因表达式编程挖掘紧致函数  被引量:5

Mining Compact Function Based on Nave Gene Expression Programming

在线阅读下载全文

作  者:朱明放[1] 唐常杰[2] 陈安龙[3] 代术成[2] 于中华[2] 

机构地区:[1]江苏技术师范学院计算机工程学院,江苏常州213003 [2]四川大学计算机学院,成都610065 [3]电子科技大学计算机科学与工程学院,成都610054

出  处:《电子科技大学学报》2010年第2期284-288,310,共6页Journal of University of Electronic Science and Technology of China

基  金:国家自然科学基金(60773169);江苏技术师范学院博士启动资金(KYY09001)的资助

摘  要:基因表达式编程(GEP)是一种基因型和表现型相分离的进化新模型,为了挖掘紧致的函数关系,分析了进化系统各因素对挖掘紧致函数的影响,提出了带紧致压力的适应度函数来进化函数紧致解。实验表明,带有紧致压力的适应度函数能自动进化计算机程序,适合挖掘的紧致关系,在挖掘紧致函数中,朴素基因表达式编程(NGEP)比GEP提高效率21.7%,与不带压力的系统相比,GEP的平均压缩了31.2%,NGEP系统平均压缩了42.5%;NGEP较GEP更容易发现紧致解,且函数表达形式更容易理解,丰富了NGEP理论.Gene Expression Programming (GEP) is a new member of evolutionary algorithm family, and it is an artificial genotype/phenotype system. Aiming to discover compact mathematical functions for function finding, this study analyzes the factors that greatly affect the efficiency of GEP, proposes the fitness function with pressure parameter, and implements a naive gene expression programming (NGEP) for compact function mining tasks. Extensive experiments show that the proposed fitness function with compact pressure can automatically mine the compact functions as well as an alternative strategy to fred compact results, and NGEP boosts the convergence speed by 21.7% than GEP, in addition, the results are more understandable than that are found by GEP. Compared with the evolution system without compact pressure, the average compact rate are 31.2% in GEP and 42.5% in NGEP, respectively, which shows that NGEP is easier to fred compact results than GEP and the results are more comprehensive than traditional GEP.

关 键 词:紧致压力 紧致解 函数发现问题 朴素基因表达式编程 

分 类 号:TP311.6[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象