检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国计量学院计算机系,浙江杭州310018 [2]浙江大学计算机学院,浙江杭州310012
出 处:《智能系统学报》2009年第6期497-501,共5页CAAI Transactions on Intelligent Systems
基 金:国家自然科学基金资助项目(60842009)
摘 要:对切换回归模型的聚类方法一般都没有考虑到噪音的影响,因此在含有噪音数据的情况下,用这些方法聚类的结果就会出现一定的偏差.为了减弱聚类过程中噪音数据的影响,提出了一种新的具有抵抗噪音能力的聚类算法,称为抗噪音聚类算法.该算法通过将已知数据集划分为非噪音数据集和噪音数据集2个子集,然后对非噪音数据集进行聚类分析,估计出模型的各个参数.通过对噪音数据集和非噪音数据集进行不断地调整,同时不断地修正得到的参数估计值,从而得到对聚类结果的优化.实验表明,抗噪音聚类算法能够有效地克服噪音数据对聚类结果的影响,并估计出优质的参数.Clustering methods for switching regression models usually neglect the effects of noise.As a result,errors usually exist if clustering is carried out in a noisy environment.In order to overcome the effects of noise,a new clustering algorithm,a noise-resistant clustering algorithm,was proposed.The algorithm partitions the dataset into two sub-datasets,a noiseless dataset and a noisy dataset,and then performs clustering analysis on the noiseless dataset to estimate parameters.By continuous simultaneous adjustment of the noisy and noiseless datasets and by continuously revising estimated parameters,the results of clustering were improved.Simulation experiments demonstrated that the algorithm efficiently clusters noisy datasets and can provide good estimates of parameters.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.66