检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]山东大学医学院生物医学工程研究所,山东济南250012 [2]济南市第四人民医院心内科,山东济南250031
出 处:《中国医学物理学杂志》2010年第2期1806-1809,1820,共5页Chinese Journal of Medical Physics
摘 要:目的:探讨各种急症发病与气象条件的关系,建立基于人工神经网络的医疗气象预报模型,为预防和控制各种急症的发病提供科学参考。方法:收集济南市急救中心2007~2008年的急诊病例和同期天气资料,利用SAS9.0统计软件进行气象因素与各种急症发病人数的相关分析,利用Matlab7.0软件构建急症发病的BP人工神经网络预测模型,并对网络进行评价。结果:气象因素及其变化与各种急症的发病有密切关系。根据建立的人工神经网络模型预测显示,除CO中毒预测准确率较低外(46%),其余各类急症的预测准确率为76%~89%。结论:基于BP人工神经网络的急症医疗气象模型有较好的预测效果,具有进一步研究的价值。Objective: By analyzing the relationship between the meteorological factors and the outbreak of emergencies, an artificial neutral network model was established in order to make the medical-meteorological forecast and to reduce and prevent the emergencies. Methods: The data of emergency cases and meteorological factors within the same time in 2007 and 2008 in Ji'nan, China were collected and analyzed by using SAS9.0. The back-propagation (BP) artificial neutral network model was built by using Matlab7.0. Results: A close relationship exists between the meteorological factors as well as their changes and emergencies. The results of forecast show high accuracy rate of each emergency (76% - 89%) except CO poisoning (46%). Conclusions: This emergencies medical-meteorological forecasting model based on BP neutral network has good prediction effect and the value of further research.
分 类 号:R122.2[医药卫生—环境卫生学] TP183[医药卫生—公共卫生与预防医学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.74