基于Gabor滤波和BP神经网络的二维条码区域提取  被引量:6

2D Barcode Region Extraction Based on Gabor Filtering and BP Neural Network

在线阅读下载全文

作  者:杨兆选[1] 吴佳鹏[1] 白卓夫[1] 苏育挺[1] 王曾敏[1] 

机构地区:[1]天津大学电子信息工程学院,天津300072

出  处:《天津大学学报》2010年第3期210-214,共5页Journal of Tianjin University(Science and Technology)

基  金:天津市重点自然科学基金资助项目(07JCZDJC05800)

摘  要:复杂背景下的二维条码区域提取一直是Data Matrix条码解码过程中的难题之一.通过对图像进行形态学分析从而确定条码的可能区域的方法因计算简单而被广泛应用,但存在着形态学结构体难以选择和虚警率比较高的缺点.为克服这些缺点,提出了基于Gabor滤波和BP神经网络的Data Matrix条码区域提取方法(GF-BPNN).用不同尺度不同方向的Gabor滤波器对图像进行滤波提取其纹理特征,再进行特征变换,使所得特征具有尺度和旋转不变性;然后利用BP神经网络按照前述特征对像素进行分类,再经过形态学后处理提取条码区域.实验结果表明,与进行形态学分析的方法相比,GF-BPNN具有较高的准确率和鲁棒性.Extracting 2D barcode region in complex backgrounds has always been a key problem in the procedure of Data Matrix barcode decoding. Thanks to its low computation complexity, morphological analysis was widely applied in extracting potential regions of Data Matrix barcodes, with inherent defects of high false accept rate and difficulty in choosing appropriate structuring element though. In order to overcome these drawbacks, the method of Data Matrix barcode region extraction, based on Gabor filtering and BP neural network (GF-BPNN), was proposed. GF-BPNN firstly filtered the image by a set of Gabor filters with different scales and orientations to extract its texture features, and then transformed these features to make them scale and rotate invariant. After that, GF-BPNN employed the BP neural network to classify pixels according to the features aforementioned. Finally, Data Matrix barcode regions were extracted by morphological post-processing. Experiment results revealed that GF-BPNN was more accurate and robust than morphological analysis.

关 键 词:GABOR滤波 BP神经网络 DATA Matrix条码 区域提取 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象