量子信息中的一些迹不等式  

Some Trace Inequalities of Quantum Information

在线阅读下载全文

作  者:刘波[1] 

机构地区:[1]陕西教育学院数理工程系,陕西西安710061

出  处:《陕西教育学院学报》2010年第1期98-101,共4页Journal of Shaanxi Institute of Education

摘  要:为了证明对于Si是2阶密度矩阵,π={πi}in=1是概率分布,且矩阵A(s)≡∑i=1 n πiS11+si是可逆的,那么对任意0≤s≤1,H(x)=-xlogx,有Tr[A(s)s{∑j=1 n πjS11+sj(logS11+sj)2}-A(s)-1+s{∑j=1 n πjH(S11+sj)}2]≥0.可以利用cauchy-schwarz不等式,Jensen不等式和迹的一些性质来证明。结果表明这些涉及矩阵和对数的不等式给出了由K.Yanagi提出的开放问题的部分解答。因为这些结论仅仅是特例,所以在此基础上可以作进一步的研究。Aim: Supposebe Si be 2 × 2 is density matrix, π = {πi }in=1 is any a probability distribution,and A (s)≡^n∑i=1πuSu^1/1+s is invertible, for any 0≤s≤1, H(x ) = - xlogx, and then Tr[A(s)^s{^n∑j=1πjSj^1/1+s(logSj^1/1+s)^2}-A(s)^-1+s{n^∑j=1πjH(Sj^1/1+s)}^2]≥0.which is a generalization of an inequality proved by K. Yanagi and others.Method: These problems are settled by applying Caushy-schwarz inequality, Jensen's inequality and some property of trace. Results: These inequalities related matrix logarithm give partial answer of the open problem posed by Yanagi. Conclusion: Some further studies on this base will been done because the results of those trace inequalities is just one case.

关 键 词:迹不等式 凹性 量子可靠性函数 

分 类 号:O174[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象