检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘波[1]
机构地区:[1]陕西教育学院数理工程系,陕西西安710061
出 处:《陕西教育学院学报》2010年第1期98-101,共4页Journal of Shaanxi Institute of Education
摘 要:为了证明对于Si是2阶密度矩阵,π={πi}in=1是概率分布,且矩阵A(s)≡∑i=1 n πiS11+si是可逆的,那么对任意0≤s≤1,H(x)=-xlogx,有Tr[A(s)s{∑j=1 n πjS11+sj(logS11+sj)2}-A(s)-1+s{∑j=1 n πjH(S11+sj)}2]≥0.可以利用cauchy-schwarz不等式,Jensen不等式和迹的一些性质来证明。结果表明这些涉及矩阵和对数的不等式给出了由K.Yanagi提出的开放问题的部分解答。因为这些结论仅仅是特例,所以在此基础上可以作进一步的研究。Aim: Supposebe Si be 2 × 2 is density matrix, π = {πi }in=1 is any a probability distribution,and A (s)≡^n∑i=1πuSu^1/1+s is invertible, for any 0≤s≤1, H(x ) = - xlogx, and then Tr[A(s)^s{^n∑j=1πjSj^1/1+s(logSj^1/1+s)^2}-A(s)^-1+s{n^∑j=1πjH(Sj^1/1+s)}^2]≥0.which is a generalization of an inequality proved by K. Yanagi and others.Method: These problems are settled by applying Caushy-schwarz inequality, Jensen's inequality and some property of trace. Results: These inequalities related matrix logarithm give partial answer of the open problem posed by Yanagi. Conclusion: Some further studies on this base will been done because the results of those trace inequalities is just one case.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49