基于序优化理论的晕轨道转移轨道设计  被引量:7

Transfer Trajectory Design for Halo Orbit Based on Ordinal Optimization Theory

在线阅读下载全文

作  者:胡少春[1,2] 孙承启[1,2] 刘一武[1,2] 

机构地区:[1]北京控制工程研究所,北京100190 [2]空间智能控制技术国家级重点实验室,北京100190

出  处:《宇航学报》2010年第3期662-668,共7页Journal of Astronautics

摘  要:利用晕轨道的稳定流形可以设计从地球到晕轨道的转移轨道。但由于小幅度晕轨道的稳定流形与地球停泊轨道无法相交,因此需采用两脉冲转移。微分修正法是求解两脉冲转移常用的优化方法,虽然收敛速度快,但很难获取全局最优解,而且收敛半径小,如果初始猜想与最优解相差很远,该方法可能会不收敛。将序优化理论与微分修正法相结合,利用序优化思想缩小搜索空间,得到足够好的初始猜想,然后利用微分修正法快速收敛到满足终端精度要求的解。仿真结果表明该方法有很好的收敛性,且计算量小。Stable manifolds associated with a halo orbit can be used to design the transfer trajectory from the Earth orbit to halo orbit. But for halo orbits of small amplitude,the stable manifold could not approach the Earth. So it is necessary to adopt two-impulse transfer trajectory. The differential correction method is one of the optimization approaches that solving two-impulse transfer problem. Although it converges quickly,it could hardly find the global optimal solution. Moreover,its convergent radius is small,if the initial guess is far from the optimal solution,it may fail to converge. This paper proposed a method combined the Ordinal Optimization theory and the differential correction method to minimize the halo orbit insertion maneuver velocity,using Ordinal Optimization to narrow down the design space and finding an appropiate initial guess,and then taking advantage of the quick local convergence behavior of the differential correction method to obtain good result. The numerical simulation showed that the method has good convergence behavior and requires less computation

关 键 词:圆型限制性三体问题 平动点 晕轨道 稳定流形 序优化 微分修正 

分 类 号:V412.41[航空宇航科学与技术—航空宇航推进理论与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象