检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:段静波[1] 李道奎[1] 袁杰红[1] 雷勇军[1]
机构地区:[1]国防科技大学航天与材料工程学院,湖南长沙410073
出 处:《力学季刊》2010年第1期118-123,共6页Chinese Quarterly of Mechanics
基 金:教育部新世纪优秀人才支持计划资助项目(NCET-08-0148);高等学校博士学科点专项科研基金资助项目(20069998002)
摘 要:采用线弹簧模型求解含焊接残余应力平板多个共面任意分布表面裂纹的应力强度因子。利用边裂纹权函数给出了裂纹表面上沿厚度非线性分布的残余应力向线性分布的转化公式。基于Reissner板理论和连续分布位错思想,将含多个共面任意分布表面裂纹的无限平板问题归结为一组Cauchy型奇异积分方程,并采用Gauss-Chebyshev方法获得了奇异积分方程的数值解。以三共面表面裂纹为例,计算了表面裂纹的应力强度因子,并讨论了裂纹间距、裂纹几何形状等因素对应力强度因子的影响。The stress intensity factors (SIFs) were presented for multitudinous distributed coplanar surface cracks in a residually stressed plate by using line-spring model. The transform formula for the residual stress from nonlinear gradients to linear ones along the crack surface was obtained by using the edge cracked weight function. Based on Reissner's plate theory along with continuously distributed dislocation thought, the problem of an infinite plate containing multitudinous distributed coplanar surface cracks was came down to a set of Cauchy type singular integral equations, which are resolved by Gauss-Chebyshev method. Take three distributed coplanar surface cracks for example, the SIFs were given and the varia- tion of the SIFs affected by the distance between cracks and crack shape were discussed.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.90