Modeling Methane Emissions from Paddy Rice Fields under Elevated Atmospheric Carbon Dioxide Conditions  被引量:1

Modeling Methane Emissions from Paddy Rice Fields under Elevated Atmospheric Carbon Dioxide Conditions

在线阅读下载全文

作  者:谢宝华 周再兴 郑循华 张稳 朱建国 

机构地区:[1]State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry,Institute of Atmospheric Physics,Chinese Academy of Sciences [2]Graduate University of Chinese Academy of Sciences [3]State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences

出  处:《Advances in Atmospheric Sciences》2010年第1期100-114,共15页大气科学进展(英文版)

基  金:supported by the National Natural Science Foundation of China (40675075, 40425010);the Chinese Academy of Sciences (KZCX3-SW-440,KZCX2-yw-204);the European Union (NitroEurope IP 017841)

摘  要:Abstract Methane (CH4) emissions from paddy rice fields substantially contribute to the dramatic increase of this greenhouse gas in the atmosphere. Due to great concern about climate change, it is necessary to predict the effects of the dramatic increase in atmospheric carbon dioxide (CO2) on CH4 emissions from paddy rice fields. CH4MOD 1.0 is the most widely validated model for simulating CH4 emissions from paddy rice fields exposed to ambient CO2 (hereinafter referred to as aCO2). We upgraded the model to CH4MOD 2.0 by: (a) modifying the description of the influences of soil Eh and the water regime on CH4 production; (b) adding new features to reflect the regulatory effects of atmospheric CO2 upon methanogenic substrates, soil Eh during drainages, and vascular CH4 transport; and (c) adding a new feature to simulate the influences of nitrogen (N) addition rates on methanogenic substrates under elevated CO2 (hereinafter referred to as eCO2) condition. Validation with 109 observation cases under aC02 condition showed that CHaMOD 2.0 possessed a minor systematic bias in the prediction of seasonally accumulated methane emissions (SAM). Validation with observations in free-air CO2 enrichment (FACE) experiments in temperate and subtropical climates showed that CH4MOD 2.0 successfully simulated the effects of eCO2 upon SAM from paddy rice fields incorporated with various levels of previous crop residues and/or N fertilizer. Our results imply that CH4MOD 2.0 provides a potential approach for estimating of the effects of elevated atmospheric CO2 upon CHa emissions from regional or global paddy rice fields with various management practices in a changing climate.Abstract Methane (CH4) emissions from paddy rice fields substantially contribute to the dramatic increase of this greenhouse gas in the atmosphere. Due to great concern about climate change, it is necessary to predict the effects of the dramatic increase in atmospheric carbon dioxide (CO2) on CH4 emissions from paddy rice fields. CH4MOD 1.0 is the most widely validated model for simulating CH4 emissions from paddy rice fields exposed to ambient CO2 (hereinafter referred to as aCO2). We upgraded the model to CH4MOD 2.0 by: (a) modifying the description of the influences of soil Eh and the water regime on CH4 production; (b) adding new features to reflect the regulatory effects of atmospheric CO2 upon methanogenic substrates, soil Eh during drainages, and vascular CH4 transport; and (c) adding a new feature to simulate the influences of nitrogen (N) addition rates on methanogenic substrates under elevated CO2 (hereinafter referred to as eCO2) condition. Validation with 109 observation cases under aC02 condition showed that CHaMOD 2.0 possessed a minor systematic bias in the prediction of seasonally accumulated methane emissions (SAM). Validation with observations in free-air CO2 enrichment (FACE) experiments in temperate and subtropical climates showed that CH4MOD 2.0 successfully simulated the effects of eCO2 upon SAM from paddy rice fields incorporated with various levels of previous crop residues and/or N fertilizer. Our results imply that CH4MOD 2.0 provides a potential approach for estimating of the effects of elevated atmospheric CO2 upon CHa emissions from regional or global paddy rice fields with various management practices in a changing climate.

关 键 词:MODELING carbon dioxide (CO2) methane (CH4) free-air CO2 enrichment (FACE) CH4MOD PADDY 

分 类 号:P402[天文地球—大气物理学与大气环境]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象