基于BP神经网络的水产健康养殖专家系统设计与实现  被引量:7

Design and Implementation on Expert System of Health Aquiculture Based on BP Neural Networks

在线阅读下载全文

作  者:曹晶[1] 谢骏[2] 王海英[2] 王广军[2] 胡朝莹[2] 

机构地区:[1]广东技术师范学院自动化学院,广东广州510630 [2]中国水产科学研究院珠江水产研究所,广东广州510380

出  处:《湘潭大学自然科学学报》2010年第1期117-121,共5页Natural Science Journal of Xiangtan University

基  金:国家"863"高技术研发计划项目(2007AA10Z239);现代农业产业技术体系建设专项资金项目(nycytx-49-13)

摘  要:针对传统专家系统的知识获取困难、推理能力弱、智能水平低和实用性差等缺点,阐述了BP神经网络运用于水产健康养殖专家系统的设计思想,对水产养殖中的饲养、水环境调控、疾病诊断的模糊描述进行量化,从系统模型和实现流程上说明本专家系统的特点,并以水质评价子系统为例,对平台功能和性能进行测试.实验数据表明,误差小于1%.该平台克服了完全依靠专家经验的主观性,诊断效率高,具有较高的实用性、通用性和灵活性.In allusion to the insufficiencies such as difficulties in knowledge acquisition,weak inference capability, low intelligence level and bad practicality of traditional expert systems, this paper introduces design concepts of BP neural network applies to expert system of health aquiculture, and quantifies the fuzzy descriptions, such as aquaculture, water environment control, disease diagnosis. The characteristics of the expert system are illuminated from the system model and the realization of that process, and water quality e- valuation system as an example for testing the functions and performance of the platform. Experimental data shows that the error rate is less than 1 % . The platform has been completely overcome the subjectivity of experience to rely on experts, which has the advantages of diagnostic efficiency, high practicality, versatility and flexibility.

关 键 词:水产养殖 专家系统 神经网络 BP算法 水质评价 

分 类 号:TP182[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象