检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:姜伟[1] 王开正[2] 唐学清[3] 蔡美珠[2] 周明术[2]
机构地区:[1]四川省医学科学院四川省人民医院检验科,成都610072 [2]泸州医学院附属医院检验科 [3]泸州医学院附属医院病理科
出 处:《中国医药》2010年第5期423-425,共3页China Medicine
摘 要:目的筛选淋巴瘤患者血清蛋白标志物建立预测模型并评价其诊断价值。方法收集81例淋巴瘤病患者和86例正常人血清标本,利用表面增强激光解吸电离飞行时间质谱(SELDI-TOF—MS)及CM10(弱阳离子表面)蛋白芯片检测并筛选淋巴瘤血清标志蛋白,分别结合Biomarker Patterns Software(BPS)软件和人工神经网络技术建立智能预测模型,评价模型诊断价值。每条芯片随机选择一个点检测标准蛋白,评价实验重复性。结果淋巴瘤与对照间共检测到65个蛋白质峰,其中39个差异有意义(P〈0.05)。BPS筛选质荷比4359,6673,8978,15190蛋白质建立决策树模型预测淋巴瘤的灵敏度为92.7%,特异度为89.1%,同时建立人工神经网络模型预测淋巴瘤灵敏度和特异度分别为87.8%和87.0%。标准蛋白表达丰度68.3±8.2,变异系数(CV)12.0%。结论利用标准蛋白作为控制物在一定程度上保证了SELDI实验重复性,筛选的标志蛋白建立决策树模型在分子水平早期预测淋巴瘤中具有潜在应用价值。Objective To evaluate the diagnostic significance of serum protein markers in patient with lymphoma. Methods The sera of 81 patients with lymphoma and 86 healthy controls were analyzed by SELDI-TOF-MS and CM10 protein chips. The profiling was used for identifying the statistically significant peaks as well as for developing predictive model based on biomarker patterns software (BPS) and artificial neural network (ANN). Results A total of 65 protein peaks were obtained and 39 differential peaks were selected (P 〈 0.05). A diagnostic model constructed by BPS with proteins of m/z 4 359, 6 673, 8 978 and 15 190 could successfully diagnose lymphoma with sensitivity of 92.7% and specificity of 89.1%. The ANN model based on the four markers distinguishing lymphoma between healthy controls had a sensitivity of 87.8% and a specificity of 87.0%. Conclusions Using standard protein as a control material can improve the experimental reproducibility. This strategy is a potential method for rapid diagnosis of lymphoma.
关 键 词:淋巴瘤 表面增强激光解吸电离飞行时间质谱 蛋白标志物
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.231