基于改进粒子群算法的土石方调配优化研究  被引量:9

Study on earthwork allocation method based on modified particle swarm optimization

在线阅读下载全文

作  者:陈秀铜[1,2] 李璐[3] 

机构地区:[1]武汉大学水利水电学院,武汉430072 [2]二滩水电开发有限责任公司,成都610051 [3]西南石油大学建筑工程学院,成都610500

出  处:《水力发电学报》2010年第2期68-72,共5页Journal of Hydroelectric Engineering

摘  要:粒子群优化算法是一类随机全局优化技术,具有收敛速度快、规则简单、易于实现的优点。针对标准粒子群算法搜索精度不高,易陷入局部最优的缺点,本文对标准粒子群算法进行了改进,改进的算法在粒子飞行中动态地调整粒子飞行的惯性权重,提高了标准粒子群算法收敛速度与收敛精度,降低了早熟收敛的比率。本文分析了用线性规划方法进行土石方调配的优缺点,并把本文提出的改进粒子群算法用于面板堆石坝的土石方调配优化中。与线性规划方法相比,该方法对土石方调配问题的约束和目标函数没有线性要求,具有可以考虑实际工程中非线性约束的优点,因此比常用的线性规划方法更接近工程实际。通过对某大型面板堆石坝的土石方调运分析以及与线性规划调运结果比较,表明本文提出的算法是正确可行的。Particle swarm optimization(PSO) algorithm is a stochastic global optimization technique and has become the hotspot of evolutionary computation for its excellent performance and simplicity of implementation. In order to overcome the disadvantages of premature convergence and local optimum,this paper presents a modified adaptive PSO that can accelerate the convergence and reduce the possibility of premature convergence by use of adjusting dynamically the inertia weight of particle. This paper analyzes the advantage and disadvantage of the linear programing method for earthwork allocation,and puts forward a new earthwork allocation method based on the modified PSO algorithm. Compared with the linear programming method commonly used,the new method can take into account the nonlinearity of constraints and object function, which is close to the conditions of a real project. Calculation results of two methods for the earthwork allocation of a concrete faced rock-fill dam are compared,which demonstrates the application and efficiency of the proposed new method.

关 键 词:运筹学 土石方调配 粒子群算法 堆石坝 优化 

分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象