决策树算法的优化研究  被引量:7

Analysis and improved implementation of decision tree algorithms

在线阅读下载全文

作  者:巩固[1] 黄永青[1] 郝国生[1,2] 

机构地区:[1]徐州师范大学计算机科学与技术学院,江苏徐州221116 [2]中国矿业大学信息与电气工程学院,江苏徐州221008

出  处:《计算机工程与应用》2010年第13期139-141,150,共4页Computer Engineering and Applications

基  金:江苏省高校自然科学基础研究No.07KJD520216;徐州师范大学项目基金No.KY200710~~

摘  要:针对决策树C4.5/5.0分类算法及改进的算法在创建决策树时训练误差率和校验误差率相对较高的缺点,提出一些改进策略,即利用属性相关性进行属性约简与度量以达到解决属性集合中的冗余属性,采用一定置信度值进行决策树的修剪,采用优化的Chi2算法更合理更准确地对连续属性进行离散化,基于改进策略设计并实现一个分类器,将改进的算法应用于Breast-cancer实例,实验结果证明改进的算法生成的决策树具有较高的分类正确率。In order to effectively deal with the problems that the training error and test error are comparatively high when decision tree is built based on C4.5 and C5.0 decision tree algorithms,three improved strategies are presented.The improved strategies are as follows:Attribute correlation that can not only remove irrelevant features,also can find redundant feature with high feature correlation,is to quantify the correlation between attribute and concept;pruning strategy adopts appropriate confidence to good purpose,then reduces the attribute number and the different value of each attribute assuring the feasibility and effectiveness of the decision tree;a variation of the Chi2 algorithm is proposed to perform attribute discretization and selection great exactly.The improved strategies are applied to the Breast-cancer data and the simulation validates their efficiency.Through experiment testing,the improved algorithm can construct the better accuracy of classification compared with the classical decision tree algorithms.

关 键 词:属性相关性 属性约束 剪枝策略 离散化 CHI2算法 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象