检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘红[1,2] 陈光[1] 宋国明[1,3] 韩太林[2]
机构地区:[1]电子科技大学自动化工程学院,成都610054 [2]长春理工大学,长春130022 [3]成都电子机械高等专科学校,成都610031
出 处:《仪器仪表学报》2010年第4期851-856,共6页Chinese Journal of Scientific Instrument
摘 要:基于神经网络的模拟电路故障诊断方法中会遇到网络训练误差很小甚至为零的情况下测试误差依然存在甚至很大的情况,这是由于神经网络的推广性能较差而造成的。针对模拟电路的神经网络故障分类器推广性能较差的问题,提出了将基于AdaBoost的神经网络集成应用于模拟电路故障诊断的新方法。通过对集成网络的诊断误差进行偏差-方差分析,说明可重复取样的AdaBoost技术可以降低集成网络中各成员网络的相关性以减少方差,从而使模拟电路故障诊断的集成网络系统的推广误差降低,使模拟电路故障诊断率得以提高。利用PSPICE的仿真数据和从实际电路获取的实测数据进行实验,实验结果均证明了该方法的有效性。In neural network based analog circuit fault diagnosis methods, there exists big test error even when the training error reaches zero. It is owing to the bad generalization performance of neural network classifier. In order to improve the diagnosis system based on generalization performance of neural network in analog circuit fault isolation, an AdaBoost based ensemble of neural network (ENN) system is proposed. The bias-variance decomposition shows that AdaBoost resample technique can reduce the correlation of the component networks, cut down the variance and generalization error of the ensemble networks. Component neural networks in this ensemble are trained by their respective training sets created by AdaBoost resample technique. Data sets obtained from simulation and actual circuit were used to evaluate this ensemble system, and experimental results reveal the validity of this method and the improvement of fault diagnosis accuracy.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.175