检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]澳大利亚伍龙贡大学环境工程
出 处:《沈阳化工学院学报》2010年第1期91-96,共6页Journal of Shenyang Institute of Chemical Technolgy
摘 要:利用人工神经网络(ANN),探讨在不无监测系统的集水区城市降水质量预测的适用性.预测使用常规的气候和地理数据集,通过构建背景传播的神经网络和回归联合模型,克服利用逐步回归的方法对数据进行分析时违背独立数据假设的问题.研究通过交叉验证用于确定停止降水时间为输入变量参数,利用地区平均浓度(EMC)作为独立的变量,构建的模型比用负荷量构建的模型更精确.数据域和输入变量的选择对回归模型的准确性也有较大影响.但计算效率、动量和隐节点数目的选择等因素,对人工神经网络模型准确性的影响较小.同时,回归和人工神经网络模型的降水质量预测结果十分相似,但在不无监测系统的集水区域城市降水质量的预测方面,回归模型更有实效性.This paper investigates the applicability of using artificial neural networks (ANNs) to pre- dict urban stormwater quality at unmonitored catchments. Back-propagation neural networks and regres- sion models were constructed using a set of general climatic and geographic data. Violation of the as- sumption of data independence lead to the inclusion of insignificant variables when the data was analysed using stepwise regression. To overcome this problem, cross validation was used to determine when to cease input variable entry. Models constructed using event mean concentration (EMC) as the dependent variable were more accurate than those Using load. The data domain and selection of input variables had a significant effect upon the accuracy of the regression models. Whereas the choice of learning rates, mo- mentum and number of hidden nodes had an insignificant effect upon the accuracy of the ANN models. Regression and ANN models yielded similar predictions. However, the efficiency of the regression mod- els made them a more pragmatic approach for predicting urban stormwater quality at unmonitored sites.
分 类 号:X820.4[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7