模糊神经网络在冲天炉铁液质量预测中的应用  

Application of Fuzzy Neural Network in Predicting the Quality of Cupola Molten Iron

在线阅读下载全文

作  者:曾怡丹[1] 曲洁[1] 

机构地区:[1]内蒙古工业大学材料科学与工程学院,内蒙古呼和浩特010051

出  处:《铸造技术》2010年第4期487-490,共4页Foundry Technology

摘  要:将模糊神经网络用于冲天炉铁液质量预测,构造了一个5层前馈网络,利用27组实验数据对网络进行训练,并对4组未知样本进行预测。结果表明,与目前所用热分析法相比,该网络模型在处理铁液质量这类在一定程度上具有不确定性的多变量非线性对象方面,能够消除建立模型时人为限定,提高预测精度;有效处理模糊信息,而且具有较强的学习能力,适应能力和泛化能力。In this paper, a fuzzy neural network, with a five-storey structure back propagation network has been developed for predicting the quality of cupola molten iron. 27 groups of the experimental samples were used to train the network and 4 groups are used to verify the network. The results show that for predicting the quality of molten iron with uncertainty and the multi-variable nonlinear object, to some extent, a fuzzy neural network model is better than conventional thermal analysis methods to eliminate the factitious limited on modeling and to improve the prediction accuracy and effective, and to be easy to deal with fuzzy information. It is shown that the method is feasible and has strong learning ability, generalization ability and adaptability.

关 键 词:冲天炉铁液 模糊神经网络 质量预测 

分 类 号:TG232.1[金属学及工艺—铸造] TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象