检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]内蒙古工业大学材料科学与工程学院,内蒙古呼和浩特010051
出 处:《铸造技术》2010年第4期487-490,共4页Foundry Technology
摘 要:将模糊神经网络用于冲天炉铁液质量预测,构造了一个5层前馈网络,利用27组实验数据对网络进行训练,并对4组未知样本进行预测。结果表明,与目前所用热分析法相比,该网络模型在处理铁液质量这类在一定程度上具有不确定性的多变量非线性对象方面,能够消除建立模型时人为限定,提高预测精度;有效处理模糊信息,而且具有较强的学习能力,适应能力和泛化能力。In this paper, a fuzzy neural network, with a five-storey structure back propagation network has been developed for predicting the quality of cupola molten iron. 27 groups of the experimental samples were used to train the network and 4 groups are used to verify the network. The results show that for predicting the quality of molten iron with uncertainty and the multi-variable nonlinear object, to some extent, a fuzzy neural network model is better than conventional thermal analysis methods to eliminate the factitious limited on modeling and to improve the prediction accuracy and effective, and to be easy to deal with fuzzy information. It is shown that the method is feasible and has strong learning ability, generalization ability and adaptability.
分 类 号:TG232.1[金属学及工艺—铸造] TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222