检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京理工大学计算机科学与技术学院,南京210094 [2]安徽工程科技学院计算机科学与工程系,芜湖241000
出 处:《计算机科学》2010年第5期251-253,264,共4页Computer Science
基 金:国家自然科学基金(No.60873151);国家863计划项目(No.2006AA01Z119)资助
摘 要:提出了一种基于最大差值的二维边界Fisher的鉴别分析方法。该方法利用描述类间数据可分性的相似度矩阵Sp与描述类内数据紧致性的相似度矩阵Sc之差作为鉴别准则,从而避免了边界Fisher鉴别分析所遇到的小样本问题。所提方法是直接基于图像矩阵的,与以往的基于图像向量的方法相比,进一步提高了识别的正确率。另外,还揭示了基于最大差值的边界Fisher鉴别方法和边界Fisher鉴别的内在关系。在ORL和Yale人脸数据库上的实验表明,所提方法具有较高的识别率。A novel two-dimensional maximum difference marginal Fisher discriminant analysis(2DMDMFA) was proposed for face recognition. The algorithm adopts the difference of similarity matrix Sp which characterizes the interclass reparability and similarity matrix S which characterizes the intraclass compactness as discriminant criterion. In such a way,the small sample size problem occurred in marginal Fisher analysis(MFA) is avoided. In addition,the construction of Sp and Sr is directly based on original training image matrices rather vectors. It is not necessary to convert the image matrix into high-dimensional image vector like those previous methods so that the recognition rate is raised. Besides, the relations between the maximum difference marginal Fisher analysis discriminant criterion and marginal Fisher analysis discriminant criterion for feature extraction were revealed. Experimental results on ORL and Yale face database show that the algorithm outperforms the traditional methods in recognition performance.
关 键 词:人脸识别 边界Fisher 二维差值边界Fisher 图像矩阵
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.68