检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机科学》2010年第5期261-264,共4页Computer Science
基 金:国家863计划项目(2007AA01Z423);重庆市自然科学基金项目(CSTC;2007BB2134)资助
摘 要:近来,局部二值模式(Local Binary Pattern,LBP)在人脸识别中取得了成功应用。然而,LBP提取的特征维数通常很高。而中心对称局部二值模式(Center-Symmetric Local Binary Pattern,CS-LBP)采用中心对称思想对图像进行编码,能够显著降低提取的特征的维数。为此,将CS-LBP应用于人脸图像特征提取,并结合多通道Gabor滤波,提出了基于多通道Gabor滤波与CS-LBP的人脸识别算法。在Yale,ORL,FETER标准人脸库上的实验结果表明,相比局部二值模式,CS-LBP以提取更少的特征维数取得了相当的识别率,并且,基于多通道Gabor滤波的CS-LBP能显著提高识别精度。In recent years, Local Binary Pattern (LISP) has been successfully applied to face recognition. However, the dimensionality of the feature vector extracted by LISP is usually very high. On the contrary, Center-Symmetric Local Binary Pattern (CS-LBP) encodes the image with the technique of Center Symmetry. As a result,CS-LBP can largely reduce the extracted feature dimension. Therefore, in this paper, CS-LISP was employed to extract features from facial images,and then a new face recognition algorithm based on multi channel Gabor filtering (MCGF) and CS-;BP was brought forward. Experimental results on Yale, ORL and FETER face databases demonstrate that compared with LBP,CS-LISP can achieve the comparable performance in terms of recognition rate with lower feature dimensionality. Additionally, CS-LBP based on MCGF can increase the accuracy obviously.
关 键 词:中心对称局部二值模式 多通道GABOR滤波 特征提取 人脸识别
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.4