检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]湖南商学院计算机应用研究所,湖南长沙410205 [2]湘潭大学信息工程学院,湖南潭4110006
出 处:《智能系统学报》2010年第2期161-168,共8页CAAI Transactions on Intelligent Systems
基 金:湖南省自然科学基金重点资助项目(06JJ2033);湖南省社会科学基金资助项目(07YBB239)
摘 要:针对网格环境的自治性、动态性、分布性和异构性等特征.提出基于多智能体系统(mutil agent system,MAS)博弈协作的资源动态分配和任务调度模型,建立了能够反映供求关系的网格资源调度动态任务求解算法,证明了资源分配博弈中Nash均衡点的存在性、惟一性和Nash均衡解.该方法能够利用消费者Agent的学习和协商能力,引入消费者的心理行为,使消费者的资源申请和任务调度具有较高的合理性和有效性.实验结果表明,该方法在响应时间的平滑性、吞吐率及任务求解效率方面比传统算法要好,从而使得整个资源供需合理、满足用户QoS要求.A grid environment is characterized by its autonomy, its dynamic properties, its distributive properties, and its heterogeneity. We proposed a model for dynamic resource distribution and task scheduling based on a multiagent system (MAS) collaborative game. An algorithm for dynamically solving task scheduling of grid resources was developed. It reflected actual relationships between supply and demand. The existence and uniqueness of a Nash equilibrium point in the resource distribution game was proven, and then the Nash equilibrium solution presented. The proposed method can make full use of the learning and negotiating abilities of consumer agents and also intro- duces psychologically driven behavior. In this way the resource application and task scheduling of consumers became more reasonable and effective. Experimental results demonstrated that this approach improves smoothness, throughput capacity and task solving efficiency compared to traditional methods. Supply and demand became more manageable, meeting the requirements of quality of service (QoS).
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222