检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《复合材料学报》2010年第1期196-201,共6页Acta Materiae Compositae Sinica
基 金:天津市自然科学基金(07JCYBJC02100);中国民航大学校基金(05YK07M)
摘 要:为了应用弹性力学中的Hamilton正则方程研究压电材料的灵敏度系数问题,基于压电材料的H-R(Hellinger-Reissner)变分原理,简要地导出Hamilton正则方程算子表达式,建立了四边简支板静力学控制方程。根据灵敏度定义,在静力学控制方程的基础上联立灵敏度控制方程,得到了增维的齐次压电材料静力响应和灵敏度系数混合控制方程。应用该方程可以同时求得压电层合板的力学、电学参量及其灵敏度。该算法过程简单、运算效率和稳定性好。数值算例结果与有限差分法的结果比较表明本文方法切实有效。In order to analyze the sensitivity coefficients of piezoelectric lamina in terms of Hamilton canonical equation,based on the H-R(Hellinger-Reissner) variational principle of piezoelectric materials,the expression of operator was deduced for Hamilton canonical equation,and the governing equations of static response were established for piezoelectric plates simply supported on four sides as well.According to the definition of sensitivity analysis,the hybrid governing equation of static response and sensitivity coefficients was obtained by uniting Hamilton canonical equation and the equation of sensitivity.The mechanic,electric parameters and the sensitivity coefficients of static response would be gained by this hybrid governing equations at the same time.This algorithm simplifies the process and improves the efficiency of calculation and stability.The results of numerical examples,compared with those of the finite difference methods,show that the present solution is efficient.
关 键 词:压电材料 层合板 灵敏度分析 HAMILTON正则方程 混合控制方程
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28