基于密度的离群噪声点检测  被引量:13

Density-based detection for outliers and noises

在线阅读下载全文

作  者:张毅[1] 刘旭敏[1] 关永[1] 

机构地区:[1]首都师范大学信息工程学院,北京100048

出  处:《计算机应用》2010年第3期802-805,809,共5页journal of Computer Applications

基  金:国家自然科学基金资助项目(60873006);北京市自然科学基金资助项目(4082009);北京市教育委员会科技发展计划重点项目(KZ200710028014);北京市科技新星计划项目(2008B57)

摘  要:针对三维扫描仪获取的带噪声和离群点的点云数据,提出了基于局部离群点概念的去噪算法。通过k-近邻(KNN)搜索建立散乱点之间的拓扑关系,进而计算当前测点的局部离群因子以衡量该点的离群程度,从而限制噪声并剔除离群点。重点解决了高密度扫描点云周围分布的低密度离群噪声点的识别问题。实验结果证明,该算法能有效检测出紧挨模型边界的噪声点,并最大限度地保持模型边界。Concerning the point clouds with noises and outliers acquired by a 3D scanner,a denoising method based on the concept of local outlier was proposed.The method established the topology connection of the scattered points by searching the k-Nearest Neighbor(kNN)of each point.Local outlier factor was calculated to weight the current point's outlier level,so the noises can be restricted and the outliers can be removed.The method emphasized how to detect the outliers and noises with low density when they are scattered around the point cloud with high density.The experimental results show that the method can detect the outliers next to model boundaries easily,and maintain the borders to the greatest extent.

关 键 词:局部离群点 K-近邻 模型边界 去噪 

分 类 号:TP391.72[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象