检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机应用》2010年第3期806-809,共4页journal of Computer Applications
基 金:江西省自然科学基金资助项目(0611065;2007GZS2246)
摘 要:频繁闭项集挖掘是许多数据挖掘应用中的重要问题。为减少候选项集数量和降低支持度计算的开销,提出一种新的深度优先搜索频繁闭项集(DFFCI)的算法。将改进的压缩频繁模式树(CFP-Tree)表示的数据集信息投影到划分矩阵,使用二进制向量逻辑运算计算支持度,简化了计算过程,减少了时间开销;采用基于支持度预计算技术的全局2-项剪枝和局部扩展剪枝,有效削减了搜索空间。实验结果表明该算法的性能优于其他主流深度优先算法。Mining frequent closed itemsets is a fundamental and important issue in many data mining applications.A new depth-first search algorithm for mining frequent closed itemsets called depth-first search for frequent closed itemsets(DFFCI)was proposed,which could reduce the number of candidate itemsets and the cost of support counting.DFFCI projected the dataset information stored by the improved Compressed Frequent Pattern tree(CFP-Tree)into the partition matrix,and improved the efficiency of support counting by using binary vector logic operation.Global 2-itemset pruning based on support pre-counting and local extension pruning were used to prune the search space effectively.The experimental results show that DFFCI outperforms other depth-first search algorithms.
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222