检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西北工业大学自动化学院,陕西西安710129
出 处:《测控技术》2010年第5期36-39,共4页Measurement & Control Technology
摘 要:近年来,人脸识别由于其诱人的应用前景再次成为模式识别领域的研究热点。分析了小波变换、2DPCA以及SVM 3种方法在人脸识别中各自的优势,提出了融合小波和2DPCA进行SVM人脸识别的方法。首先对原始图像采用小波分解提取低频信息,忽略高频分量;然后利用2DPCA进行特征提取;最后把降维后的数据输入SVM进行分类识别。该方法在ORL、Yale人脸库上的实验表明,与传统的方法相比,不但可以提高识别率,而且所用时间明显减少。In recent years, face recognition becomes a hot field of pattern recognition once again because of its attractive prospect. The respective advantages of wavelet transform, 2DPCA and SVM is analyzed in face recognition, and a SVM approach to face recognition is proposed based on wavelet transform and 2DPCA. Firstly, the original images are decomposed into low frequency images by applying wavelet transform and ignored the high- frequency components. Then 2DPCA is used to deal with feature extraction. At last, SVM is made use of the feature to do classification. Its efficiency and superiority are clarified by comparative experiments on ORL and Yale face data.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.42